首页> 外文OA文献 >Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models
【2h】

Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models

机译:使用物种丰富度和功能特征预测来约束堆叠物种分布模型中的组合预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aim: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (macroecological models, MEM), or by stacking of individual species distribution models (stacked species distribution models, S-SDMs). To obtain more realistic predictions of species assemblages, the SESAM (spatially explicit species assemblage modelling) framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities.Location: The western Swiss Alps.Methods: Two implementations of the SESAM framework were tested: a ‘probability ranking’ rule based on species richness predictions and rough probabilities from SDMs, and a ‘trait range’ rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area, and seed mass) to constrain a pool of species from binary SDMs predictions.Results: We showed that all independent constraints contributed to reduce species richness overprediction. Only the ‘probability ranking’ rule allowed slight but significant improvements in the predictions of community composition.Main conclusions: We tested various implementations of the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further understanding the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints.
机译:目的:需要在社区一级对物种分布进行建模,以有效预测全球变化对多样性和生态系统功能的影响。可以使用社区的宏观生态特性(宏观生态模型,MEM),或通过堆叠单个物种分布模型(堆叠的物种分布模型,S-SDM)来实现社区预测。为了获得对物种组合的更现实的预测,SESAM(空间上明确的物种组合建模)框架建议通过组合不同的建模方法和规则,将连续的过滤器应用于初始物种源库。在这里,我们提供了在高山草原社区对该框架进行的首次测试。位置:瑞士阿尔卑斯山西部方法:测试了SESAM框架的两种实现方式:基于物种丰富度预测和SDM的粗略概率的``概率排名''规则,以及一个``性状范围''规则,该规则使用三种不同功能性状(营养高度,比叶面积和种子质量)的社区水平分布的预测上限和下限来限制来自二元SDM预测的物种库。表明所有独立的限制因素都有助于减少物种丰富度的过度预测。主要结论:我们通过将宏观生态学约束整合到S-SDM预测中测试了SESAM框架的各种实现,并报告了一个能够改善组成预测的方法。 。我们讨论了可能的改进,例如进一步了解环境预测变量的因果关系和精度,使用其他组装规则并测试其他类型的生态或功能约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号